

Tool for Undertakings
DPM Database

Technical documentation

Tool for Undertakings DPM Database - Technical documentation 2

Table of Contents

1 Introduction ... 3

2 Database Management System .. 3

3 Database components ... 3

4 Model of DPM metadata storage ... 6

4.1 Source (input) information and database DPM metadata population mechanisms 7

4.2 Representation of DPM model artefacts and relationships .. 7

4.2.1 Entities ... 7

4.2.2 Relationships ... 19

5 Database validations execution definition .. 23

5.1 Entities .. 24

5.1.1 vValidationRuleSQL ... 24

5.1.2 vIntraTableSQL .. 24

5.2 Relationships ... 25

6 Model of data storage .. 25

6.1 Data storage according to DPM metadata for XBRL read/write 25

6.1.1 Entities ... 25

6.1.2 Relationships ... 27

6.2 Dynamic structures for data storage ... 28

6.2.1 General idea, goals and alternatives considered .. 28

6.2.2 Example explaining principle of operation .. 29

6.2.3 Entities ... 32

7 Storage of validation results ... 33

7.1 Entities .. 33

7.1.1 dMessage ... 33

7.1.2 dMessageReferrence ... 34

7.2 Relationships ... 34

8 Application interface information .. 34

8.1 General model ... 34

8.2 Entities .. 35

8.2.1 aApplication ... 35

8.2.2 aInterfaceComponent ... 35

8.2.3 aInterfaceComponentApplication ... 35

8.3 Relationships ... 36

Tool for Undertakings DPM Database - Technical documentation 3

1 Introduction
This document describes the database used by the Tool for Undertakings. The database is the core

component of the solution. It contains metadata and data used or created by the T4U applications to

fulfil the one of the main functional requirement for the tools which is data capture and presentation

in form of tabular views (resembling layout and alignment of information requirements defined in the

legal acts or regulations) as well as production of valid XBRL reports. In addition, the database is

prepared to satisfy the secondary priority requirement, which is aiming to support translations and

extension of metadata definitions and stored data.

2 Database Management System
The T4U database is available in two technologies:

- SQLite,

- Microsoft SQL Server.

SQLite is deployed within the T4U application on the side (machine) of the Undertaking. The reason

for selection of this concrete database technology is mainly for the ease of deployment (no installation

or port configuration is needed), the multiplatform support and the open source licence. The

drawbacks are lack of certain functionalities typical for DBMSs like stored procedures, limited support

for simultaneous multiuser work and potential performance issues for larger amount of data.

To overcome these shortcomings the T4U database is also implemented in Microsoft SQL Server

technology which is a typical DBMS with all standard functionalities. This database may be used to

perform the various maintenance tasks.

The structure of both SQLite and MS SQL Server in the core part is identical. The differences may occur

for functionalities not supported by the SQLite but included in MS SQL Server.

3 Database components
The T4U database consist of four major components. Each of them fulfils different roles and satisfies

various requirements. These components are:

1. information requirements and validations metadata – that resembles the DPM dictionary,

annotated templates and validation rules metadata; it is the description of the model (similar

to an XBRL taxonomy),

2. placeholder for data storage – where stored facts refer to DPM properties; it is the understood

as the actual reported data (similar to an XBRL instance) and structured in a dimensional

approach,

3. entities whose structure resembles information requirements and is based on tabular views –

these are placeholders for data storage in “classic” relational manner; this component comes

also with information on mapping between DPM metadata/data description and classic

relational structures; this tabular oriented view of the information is composed by relational

tables in a similar way as flattened information from the XBRL Table linkbase and therefore

similar to the reference business templates view,

4. validations definitions – define validation rules to be performed on the data stored in “classic”

relational manner,

5. T4U applications information, this is the specific set of information needed by the tool for

undertaking applications (mainly user interfaces), for localisation purposes (translation of

menu options, buttons, messages, etc. to national languages), etc.

Tool for Undertakings DPM Database - Technical documentation 4

6. supporting views used by various components of the application (XBRL parser, Windows tool,

etc).

Components described above are schematically presented on Figure 1 below.

Figure 1. Components of the T4U database.

In addition to the components described above, the following processes (in form of internal ETL) occur

in the T4U database:

A. data conversion between DPM and classic relational data storage,

B. data migration between versions,

C. validations execution.

Each component and process inside of the T4U database corresponds to particular functionality of the

solution.

Information requirements metadata (component 1 on Figure 1) and validations definition (component

4 Figure 1) on is populated in the design/setup stage from the input materials (DPM dictionary and

annotated templates of Solvency II or other scope in the same format and structure). Therefore it

reflects all characteristics defined by these sources. Following the normalized DPM model, the

structure (entities, their properties and relationships) of this component is relatively stable and able

to accommodate any expected changes/modifications of information requirements in future versions.

It is also flexible enough to enable storage of any other information requirements metadata. As

described in more details later in this document, this component is used by the solution in various

Tool for Undertakings DPM Database - Technical documentation 5

stages and processes. One of the major tasks is to support navigation over the information

requirements and present them in the tabular format as in the source materials.

Definition of information requirements in this component is both, data and from centric. On one hand

it defines data cells by identifying their dimensional properties, on the other these cells are gathered

in tables whose columns and rows represented in a very normalized manner (as ordinates on axis).

This data centric description enables reference to metadata from the placeholder for data storage

according to the DPM properties (component 2 on Figure 1) which facilitates interaction with XBRL

instance document files (where exchanged data is described in a similar style). Therefore this

component interacts with XBRL parser in the process of loading of XBRL instance document data to the

database as well as generation of XBRL instance documents from the data in the database in a fast and

easy manner.

There are however two major problems with data centric approach. One is complexity of highly

normalized model - the way in which tabular views are resembled is not very intuitive and easy to

understand or query by users not familiar with the data point model and data point modelling

methodology. The other issue is potential performance problems when accessing facts. All facts are

stored in a single entity and are distinguished based on dimensional properties. This hinders prompt

rendering of selected facts in tabular views and execution of validation rules (matching facts according

to dimensional properties).

As a result, the T4U database contains also placeholders for data storage in “classic” relational manner

(component 3a on Figure 1), i.e. the facts are stored according to their presentation in business

templates by reference to row/column position. In consequence, “open” templates (i.e. these with

unlimited/unknown number of rows) in the database look identical to their representation in the

information requirements i.e. each column in a business template has its counterpart in the database

entity for this template. Each “closed” templates (i.e. a template with known/defined columns and

rows) results in a database entity whose columns represent cells from the template. Multiplications of

a template (resulting for example from numerous z-axes properties or repeatable rows or columns)

become separate columns in the database tables that are also keys for each row in these tables.

Simplicity of design of this database component enables the T4U user interfaces (Windows Forms and

Excel templates, iOS) or other connectors (like ODBC) to easily and quickly populate or access data (for

their display or validation).

As explained in more details in later in this section, the placeholder for data storage in classic relational

manner (component 3a) is generated automatically from DPM and annotated templates metadata

(component 1). The link between the two is the mapping table (component 3b on Figure 1) which

identifies the DPM properties hidden behind each row/column/page for every classic relational table.

This mapping table and mapping data that it contains is used for multiple purposes.

One (marked as process A on Figure 1) is to convert the data stored in the classic relational manner to

the DPM properties data storage placeholder (and further to XBRL) and vice versa (when XBRL instance

document is loaded in the DPM properties data storage placeholder, its data is subsequently converted

to the classic relational structures so that it can be accessed by T4U interfaces or validated).

Another process using the mapping table information relates to migration of data stored in classic

relational manner between the versions of the database (marked as process B on Figure 1). One of the

drawbacks of classic relational placeholders is their instability. Business templates tend to change in

terms of their graphical tabular representation. For example rows and columns order may be

rearranged, tables are split or merged without real change in their content, etc. Each such change

Tool for Undertakings DPM Database - Technical documentation 6

results in the new set of classic relational tables. As a consequence, data from previous periods need

to be migrated to the new structures. Mapping information enables this process by providing a link to

the stable component which is the DPM properties hidden behind every row, column and page of each

template (and its counterpart database entity). Based on that information the data can be migrated to

the new representation of classic relational structures maintaining the consistency of definitions in

relation to previous versions (and thus allowing for example data comparison across time). Currently

this process is run by means of generating XBRL instance documents and importing them back to a

new container (with minor changes such as modules codes, etc.).

And last but not least, the mapping information may support the process of definition of executable

data validations (marked as process C on Figure 1). Business rules defined in the source materials

(provided by business users) are loaded to validations definition database metadata component (4 on

Figure 1). At this stage they are stored in the normalized manner. Execution of the validations is

performed on data stored in classic relational structures (component 3a). In this process the mapping

table information may be harnessed to properly identify the involved facts based on the place of their

occurrence in templates as well as representation in terms of the DPM properties.

Another separate component of the T4U database (marked with number 5 on Figure 1) is applications’

information. In general it contains translation of the application’s interfaces (menu, buttons, messages,

etc.) and information about the version of the tool or supported containers.

A number of views is defined (6 on Figure 1) used by various components of the tool, e.g. XBRL parser,

user interfaces, etc.

4 Model of DPM metadata storage
Entities and relationships of this component of the database resemble the artefacts of the Data Point

Modelling methodology. Therefore it is recommended that readers of this section familiarize

themselves with documents listed at http://www.eurofiling.info/dpm/index.shtml and in particular

the following documentation:

http://www.eba.europa.eu/documents/10180/632822/Description+of+DPM+formal+model.pdf

explaining the DPM artefacts on UML diagrams.

Moreover, this part of the database closely follows the structure (entities and relationships) of the EBA

DPM MS Access database. The latest version of this database at the moment of the T4U database

designing and writing of this document is available under the following location:

http://www.eba.europa.eu/documents/10180/1067579/DPM+Database+2.3.1.0.zip/4bbbb28d-

3e3d-4262-b227-9daab3e008ec. It is recommended that the readers of this section read also CRD4

DPM - Database description - v2.1.pdf embedded in the compressed folder

http://www.eba.europa.eu/documents/10180/781471/DPM+Database+2.2.zip/2dbcf8e5-5990-

41e3-a068-5ddcb081ad08.

The main modifications and dissimilarities of the T4U DPM metadata component comparing to the

EBA model include:

- different patterns used for reflection of data point keys (in T4U database they are more XBRL

oriented, with information on owners in form of canonical namespace prefixes),

- many-to-many relation between Table and Axis entities (allowing axes to be reused by tables

which is a common case in some of the Solvency 2 templates),

- denormalization of the model by deletion of relationships and inclusion that information as

enumerations in table columns (e.g. data type, period type, balance attribute),

http://www.eurofiling.info/dpm/index.shtml
http://www.eba.europa.eu/documents/10180/632822/Description+of+DPM+formal+model.pdf
http://www.eba.europa.eu/documents/10180/1067579/DPM+Database+2.3.1.0.zip/4bbbb28d-3e3d-4262-b227-9daab3e008ec
http://www.eba.europa.eu/documents/10180/1067579/DPM+Database+2.3.1.0.zip/4bbbb28d-3e3d-4262-b227-9daab3e008ec
http://www.eba.europa.eu/documents/10180/781471/DPM+Database+2.2.zip/2dbcf8e5-5990-41e3-a068-5ddcb081ad08
http://www.eba.europa.eu/documents/10180/781471/DPM+Database+2.2.zip/2dbcf8e5-5990-41e3-a068-5ddcb081ad08

Tool for Undertakings DPM Database - Technical documentation 7

- lack of listing and versioning of data points which representation is limited to correspondence

with cells rather than enumerating all possible combinations (especially in case of semi open

axes constrained by hierarchies where the number of data points in some temples may

amount to several millions),

- EBA table groups, templates, tables and table versions are represented by T4U template

groups, templates, template variants, business tables and annotated tables (versioned

together with taxonomies) and tables (reused by taxonomies, linked with axes, cells, etc.),

- validation rules are limited to reference to row/column/sheet codes rather than DPM artefacts

(axes, ordinates, cells, metrics, etc.).

All entities of the T4U database are described and explained in the next sections of this document.

4.1 Source (input) information and database DPM metadata population mechanisms
DPM metadata in the database is populated from DPM dictionary and annotated templates Excel files

of EIOPA Solvency II or compatible (i.e. identical in structure).

Population of the database is performed using an automated process that is out of scope of the T4U.

As this part of the process is currently used by EIOPA for creation of the Solvency II XBRL taxonomy, it

is assumed that a database would be distributed by EIOPA.

4.2 Representation of DPM model artefacts and relationships

4.2.1 Entities
Names of entities (tables) of this component of the database start with letters “m” for information

requirements metadata and “v” for validation rules metadata followed by the short description of the

entities’ content.

The next sections introduces the entities defined for this component of the database by providing a

general explanation of the entity’s content and a table identifying entity’s attributes (columns), their

data type (in general, e.g. INTEGER, TEXT, DATE, …) and short description.

4.2.1.1 mOwner

This entity is used to identify the institution that "owns" (i.e. defines and manages) a concept (see

mConcept table) representing DPM artefact such as domain, member, hierarchy, dimension, table,

axis, ordinate, etc.

Attribute Type Description

OwnerID INTEGER Artificial ID.

OwnerName TEXT Institution (owner) name. E.g. European Insurance and Occupational
Pensions Authority, …

OwnerNamespace TEXT Recommended namespace of an owner (the "core" part of the namespace,
to be extended by suffixes representing different concepts).

OwnerLocation TEXT URI representing the root folder of the official location of taxonomy files.

OwnerPrefix TEXT Recommended prefix of an owner (used to construct XBRL codes of
different concepts). E.g. "s2c", …

OwnerCopyright TEXT Copyright text. Used in comments in XBRL taxonomy files.

ParentOwnerID INTEGER Points to OwnerID of an institution in case of extensions of the model.

ConceptID INTEGER Owner is also a concept (its name can be translated, it can be versioned,
etc.).

Tool for Undertakings DPM Database - Technical documentation 8

4.2.1.2 mConcept

This table is used to provide more information on various artefacts (identification of the owner,

translations to national languages, references to legal acts and regulations, managing changes in the

definitions by setting various currency dates, etc.).

Attribute Type Description

ConceptID INTEGER Artificial ID.

ConceptType TEXT Type of a concept: Axis, AxisOrdinate, Dimension, Domain, Hierarchy,
Member, Module, ReportingFramework, Table,
ConceptualTemplateOrTable, Taxonomy, Language, Owner…

OwnerID1 INTEGER Points to mOwner.OwnerID.

CreationDate DATE Date when concept was first created.

ModificationDate DATE Date when concept was last modified.

FromDate DATE Date when concept starts to be used in expression of information
requirements.

ToDate DATE Date when concept ends to be used in expression of information
requirements.

4.2.1.3 mDomain

This table lists domains. Domains group values of a particular kind. Domain may have an explicit list of

allowable values (members) or specify values of a particular type or pattern (a "typed" domain).

Domains provides the allowable values for dimension the reference them.

Attribute Type Description

DomainID INTEGER Artificial ID.

DomainCode TEXT Short code (usually two capital letters).

DomainLabel TEXT Descriptive label (in English).

DomainDescription TEXT Longer description (in English).

DomainXBRLCode TEXT Code (QName) used in XBRL documents, consisting of canonical
namespace prefix followed by a domain code.

DataType INTEGER Indicates the allowed type of values (for Typed domains). One of the
following "boolean"/"date"/"integer"/"decimal"/"monetary"/
"percentage"/"code"/"string".

IsTypedDomain BOOLEAN "Typed" domains allow any value of a particular type (i.e. string, number,
date etc.), "explicit" dimensions only allow a choice from a given list of
members.

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner
and translation) information.

4.2.1.4 mDimension

Category/aspect used to describe and differentiate data points, each relates to one specific feature.

Allowed values are taken from a referenced domain.

Attribute Type Description

DimensionID INTEGER Artificial ID.

DimensionLabel TEXT Descriptive label (in English).

DimensionCode TEXT Short code (usually two or three capital letters).

DimensionDescription TEXT Longer description (in English).

DimensionXBRLCode TEXT Code (QName) used in XBRL documents consisting of canonical
namespace prefix followed by a dimension code.

1 In SQLite applies not existing OwnerID „0” for domain defining members representing metrics.

Tool for Undertakings DPM Database - Technical documentation 9

DomainID INTEGER Points to mDomain.DomainID. Domain from which the allowable
values for this dimension are taken.

IsTypedDimension BOOLEAN "Typed" dimensions allow any value of a particular form (i.e. any
string of certain length or pattern, any number, a date etc.), "explicit"
dimensions only allow a choice from a given list of members.

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner
and translation) information.

4.2.1.5 mMember

An explicit possible value within a domain.

Attribute Type Description

MemberID INTEGER Artificial ID.

DomainID INTEGER Points to mDomain.DomainID. Domain to which this member belongs.

MemberCode TEXT Short code (resembling XBRL local name).

MemberLabel TEXT Descriptive label (in English).

MemberXBRLCode TEXT Code (QName) used in XBRL documents consisting of canonical
namespace prefix followed by a member code.

IsDefaultMember BOOLEAN Identifies if the member is a default value (1) for a domain it points to (and
as a result for all dimensions that refer this domain).

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner and
translation) information.

4.2.1.6 mHierarchy

Hierarchies specify how members relate to each other, and can also define the aggregations from

lower to upper levels in the hierarchy.

Attribute Type Description

HierarchyID INTEGER Artificial ID.

HierarchyCode TEXT Short code (often used also as @id on role definitions in XBRL). Usually
contains referenced domain code followed by an underscore and
sequential number.

HierarchyLabel TEXT Descriptive label (in English).

DomainID INTEGER Points to mDomain.DomainID. Domain this hierarchy relates to.

HierarchyDescription TEXT Description (in English) or application to dimensions or templates (for
documentation purposes only).

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner
and translation) information.

4.2.1.7 mHierarchyNode

Represents a node in a hierarchy of members, specifying how members relate to each other, and can

also define the aggregations from lower to upper levels in the hierarchy

Attribute Type Description

HierarchyID INTEGER Points to mHierarchy.HierarchyID. Hierarchy to which this node
belongs.

MemberID INTEGER Points to mMember.MemberID. Member this node represents.

IsAbstract BOOLEAN Identifies if a member is in the hierarchy merely for the reason of
grouping.

ComparisonOperator TEXT Indicates the comparison relationship between this node and the
aggregation of its children.

UnaryOperator TEXT Indicates the contribution of this node to the aggregation of its siblings.

Tool for Undertakings DPM Database - Technical documentation 10

Order INTEGER Position of this node within its set of siblings.

Level INTEGER Level of this node, lower level numbered nodes contain higher
numbered ones, i.e. lower levels are nearer the root (having level 1)

ParentMemberID INTEGER Indicates the parent of this node, if any - i.e. the level immediately
above. Null for root nodes.

Path

TEXT Path from the root node to this node, using MemberID split by comma.

4.2.1.8 mMetric

The fundamental conceptual meaning of a piece of information.

Attribute Type Description

MetricID INTEGER Artificial ID. Preferably it should match mMember.MemberID
from which descriptive labels may be obtained (metric is a
subtype of member).

CorrespondingMemberID INTEGER Points to mMember.MemberID (in case mMetric.MetricID does
not match corresponding mMember.MemberID).

DataType INTEGER Type of data. One of the following (in brackets corresponding
XBRL data types): “Date” (xbrli:dateItemType), “Percentage”
(xbrli:pureItemType), “Integer” (xbrli:integerItemType),
“Monetary” (xbrli:monetaryItemType), “Decimal”
(xbrli:decimalItemType), “String” (xbrli:stringItemType),
“Boolean” (xbrli:booleanItemType), “Enuneration/Code”
(enum:enumerationItemType), “true” (xbrli:booleanItemType
with restriction to true), “URI” (xbrli:anyURIItemType)

FlowType TEXT The time dynamics of the information, is it a value at a specific
point in time (a "stock" or "level"), or measured over a time period
(a "flow" or "change"). N.B. not necessarily the XBRL "period type"
where all metrics are assumed to be mapped to instant periods
(the reference date).

BalanceType TEXT "Credit"/"Debit"/Null.

ReferencedDomainID INTEGER Points to mDomain.DomainID. Domain of the allowed values for
this Metric (for enumerated/code-typed Metrics).

ReferencedHierarchyID INTEGER Points to mHierarchy.HierarchyID/mHierarchyNode.HierarchyID.
Indicates that the allowed values for this metric are restricted to
those present in the referenced hierarchy.

HierarchyStartingMemberID INTEGER Points to mHierarchyNode.MemberID. Identifies starting member
in the hierarchy (ReferenceHierarchyID) whose descendants (-or-
self depending on IsStartingMemberIncluded) form valid values
for a metric (taking into account mHierarchyNode.IsAbstract).

IsStartingMemberIncluded BOOLEAN Informs if the starting member identified by
HierarchyStartingMemberID is also a valid value for a metric (or is
it only its descendants).

4.2.1.9 mReportingFramework

Overall reporting framework. High level, stable concept. E.g. Solvency 2, …

Attribute Type Description

FrameworkID INTEGER Artificial ID.

FrameworkCode TEXT Short code of a framework (e.g. s2md, …)

FrameworkLabel TEXT Descriptive label (in English). E.g. solvency, …

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner and
translation) information.

Tool for Undertakings DPM Database - Technical documentation 11

4.2.1.10 mTaxonomy

A specific description of the classification of the tables and data points of a reporting framework, at a

particular point/period in time.

Attribute Type Description

TaxonomyID INTEGER Artificial ID.

FrameworkID INTEGER Points to mReportingFramework.FrameworkID. Reporting framework this
taxonomy describes.

TaxonomyCode TEXT Short code of a taxonomy, e.g. sol2, …

TaxonomyLabel TEXT Descriptive label (English), e.g. solvency2, …

Version TEXT E.g. 1.5.2.c, ….

PublicationDate DATE Taxonomy publication date (e.g. 2015-02-28). To be used in namespaces of
taxonomy files.

TechnicalStandard TEXT Identifier of the prescriptive technical standard which this taxonomy
describes/models.

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner and
translation) information.

FromDate DATE Date from which this taxonomy is/was valid.

ToDate DATE Date until which this taxonomy is/was valid.

4.2.1.11 mTemplateOrTable

Identifies templates and tables (as defined in the Business and Annotated Templates).

Attribute Type Description

TemplateOrTableID INTEGER Artificial ID.

TaxonomyID INTEGER Points to mTaxonomy.TaxonomyID.

TemplateOrTableCode TEXT Short code, e.g. S.01.01.01.01

TemplateOrTableLabel TEXT Description (in English). Usually template/table title.

TemplateOrTableType TEXT One of the following: "TemplatesGroup", "Template",
"TemplateVariant", "BusinessTable", "AnnotatedTable".

Order INTEGER Order (preferably global but not necessary) of a Template or Table
for displaying templates and tables in tree structure.

Level INTEGER Level of a Template or Table for displaying templates and tables in
tree structure, usually: 1 for "TemplatesGroup", 2 for "Template", 3
for "TemplateVariant", 4 for "BusinessTable", 5 for
"AnnotatedTable".

ParentTemplateOrTableID INTEGER Parent template or table.

ConceptID INTEGER Points to mConcept.ConceptID.

TC TEXT Range of cells as in underlying Annotated Templates used to identify
where are the components of each table and how tables relate to
one another in graphical layout on one sheet: caption of the table.

TT TEXT Range of cells as in underlying Annotated Templates used to identify
where are the components of each table and how tables relate to
one another in graphical layout on one sheet: business labels on the
top of the table (headers of columns)

TL TEXT Range of cells as in underlying Annotated Templates used to identify
where are the components of each table and how tables relate to
one another in graphical layout on one sheet: business labels on the
left side of the table (headers of rows)

TD TEXT Range of cells as in underlying Annotated Templates used to identify
where are the components of each table and how tables relate to
one another in graphical layout on one sheet: rectangular area
enclosing the data cells of the table.

Tool for Undertakings DPM Database - Technical documentation 12

YC TEXT Range of cells as in underlying Annotated Templates used to identify
where are the components of each table and how tables relate to
one another in graphical layout on one sheet: codes of rows.

XC TEXT Range of cells as in underlying Annotated Templates used to identify
where are the components of each table and how tables relate to
one another in graphical layout on one sheet: codes of columns.

4.2.1.12 mTable

The specific description of a particular table from a reporting framework, within a taxonomy, valid

during a particular time period. Several "Tables" may represent the evolution of a particular "Business-

"/"Annotated Table" over time.

Attribute Type Description

TableID INTEGER Artificial ID.

TableCode TEXT Short code of a table.

TableLabel TEXT Descriptive label (in English).

FromDate DATE Date from which this version of this table is/was valid.

ToDate DATE Date until which this version of this table is/was valid.

XbrlFilingIndicatorCode TEXT Code of the filing indicator used to indicate the reporting of this table
(N.B. may be shared with other tables which form part of the same
template, all of those tables will be considered filed or not filed as a
single unit).

XbrlTableCode TEXT Table code used in XBRL documents.

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner
and translation) information.

YDimVal TEXT For open and semi-open tables – dimension codes (with wildcards * or
hierarchy reference) used on open or semi open Y axes. In alphabetical
order based on dimension code.

ZDimVal TEXT Metrics and dimension members (or wildcards * for open axis,
hierarchy reference for open axis) used on Z axes. In alphabetical order
based on dimension code.

4.2.1.13 mTaxonomyTable

Attribute Type Description

TaxonomyID INTEGER Points to mTaxonomy.TaxonomyID.

TableID INTEGER Points to mTable.TableID.

AnnotatedTableID INTEGER Points to mTemplateOrTable.TemplateOrTableID for
TemplateOrTableType = "AnnotatedTable".

IsSimplyResuse BOOLEAN Indicates that a table from a previously released taxonomy is being
directly reused without any modifications.

4.2.1.14 mAxis

Represents either a row, column or sheet of a particular table that it is linked to via mTableAxis.

Attribute Type Description

AxisID INTEGER Artificial ID.

AxisOrientation TEXT Either X, Y or Z for row, column or sheet respectively

AxisLabel TEXT Descriptive label (in English). Relevant for these axes with IsOpenAxis = 1, in
particular Z axes (where it can be used e.g. to label a text or dropdown box
for the user to enter/choose the Z axis value) and for open/semi-open Y axes
(headers of columns in open tables).

Tool for Undertakings DPM Database - Technical documentation 13

IsOpenAxis BOOLEAN An "open" (1) ("closed" is 0) axis allows a variable number of entries, either
chosen from a list of options or of a type of value. Used e.g. for vertical list
tables, where a "line number" is used, and for "sheet per
country/currency/sector" type tables.

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner and
translation) information.

4.2.1.15 mTableAxis

Links axis and table to which it applies (enables reuse of axis for different tables).

Attribute Type Description

AxisID INTEGER Point to mAxis.AxisID.

TableID INTEGER Point to mTable.TableID.

Order INTEGER Required mainly for multiple Y or Z-axes. Indicates in what order the axes should be
shown (i.e. in what order any text or dropdown boxes used to represent the axes
should be displayed).

4.2.1.16 mAxisOrdinate

Represents a specific position on a closed axis (or the only ordinate on open axis referring to a typed

dimension or semi-open axis pointing to a hierarchy). Tree structure of ordinates represents structure

(indenting/nesting) of rows or columns.

Attribute Type Description

AxisID INTEGER Points to mAxis.AxisID.

OrdinateID INTEGER Artificial ID.

OrdinateLabel TEXT Descriptive label (in English). Text of a header.

OrdinateCode TEXT Row/column code (e.g. R0010, C0020, …)

IsDisplayBeforeChildren BOOLEAN Hint for display. If 1 then this ordinate is intended to be displayed
above or to the left of any child ordinates, if 0/null it should be
shown below or to the right of them.

IsAbstractHeader BOOLEAN If 1, then this ordinate does not represent any reportable data row
or column or sheet, e.g. it may be displayed either as a completely
grey row/column, or as just a heading with no row/column for
values etc.

IsRowKey BOOLEAN Identifies (if 1) ordinate that is a key column in an open table.
Otherwise it is not key (may be left empty/nilled).

Level INTEGER Level of this ordinate, lower level numbered ordinates "contain"
higher numbered ones, i.e. lower levels are nearer the root (tree
structure information).

Order INTEGER Position of this ordinate within its set of siblings.

ParentOrdinateID INTEGER Parent of this ordinate, if any - i.e. on the level immediately above.

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change,
owner and translation) information.

4.2.1.17 mOrdinateCategorisation

A pair of dimension and member describing one aspect of the categorisation of a particular position

along an axis of a table.

Attribute Type Description

OrdinateID INTEGER Points to mAxisOrdinate.OrdinateID.

Tool for Undertakings DPM Database - Technical documentation 14

DimensionID INTEGER Points to mDimension.DimensionID. The dimension considered
to describe (data in the cells that have) a specific position along
an axis of a particular table.

MemberID INTEGER Points to mMember.MemberID. The relevant value of a
dimension describing (data in the cells that have) a specific
position along an axis of a particular table.

DimensionMemberSignature TEXT Signature for dimension and its member. Constructed as a
component of mTableCell.DataPointSignature based on values
of mDimension.DimensionXBRLCode,
mMember.MemberXBRLCode and mOpenAxisValueRestriction
(if applies).

DPS TEXT Same as DimensionMemberSignature but referring to XBRL
codes rather than database IDs.

Source TEXT Identifies if categorisation is used for MD model or specific for
HD model.

4.2.1.18 mOpenAxisValueRestricton

For table with semi open axes (i.e. those allowing a choice of a variable number of

sheets/rows/columns each having one value from a particular domain), the values allowed to be

reported may not be all the values from a domain, but only a subset. This table indicates the allowed

subset by referencing a member in a hierarchy, all member below the referenced member are

acceptable values, if IsStartingMemberIncluded is true, the referenced member is also a valid value,

otherwise it is not.

Attribute Type Description

AxisID INTEGER Points to mAxis.AxisID (for semi-open axis). Axis to which this
restriction applies.

HierarchyID INTEGER Points to mHierarchyNode.HierarchyID. Values for a semi open
axis are restricted to those in the given hierarchy.

HierarchyStartingMemberID INTEGER Points to mHierarchyNode.MemberID. If provided values for a
semi open axis are restricted to the descendants (or self) of this
member in the given hierarchy.

IsStartingMemberIncluded BOOLEAN If 1, then the referred starting member is a valid value, if not,
only it's descendants are.

4.2.1.19 mTableCell

Represents an individual intersection of row, column (and sheet) for a particular table.

Attribute Type Description

CellID INTEGER Artificial ID.

TableID INTEGER Points to mTable.TableID. A table this cell is part of.

IsRowKey BOOLEAN Same as mAxisOrdinate.IsRowKey but for cells.

IsShaded BOOLEAN Identifies if no data is expected to be entered into this cell, either
because it is not required, or because this cell forms part of a heading,
or the intersection of its row and column (and sheet) has no logical
meaning.

BusinessCode TEXT Business code as assigned to a cell in the Business Templates (if applies).

DatapointSignature TEXT Signature of a data point represented by a cell. Identifies metric and
dimension member pairs (sorted alphabetically base on dimension
codes). In case of open values for metrics or dimensions uses wildcard
(*), for semi-open axes refers information from
mOpenAxisValueRestriction in square brackets [] and contains “?”
character if default members is included in the referred hierarchy (and

Tool for Undertakings DPM Database - Technical documentation 15

hence this dimension will be omitted in the XBRL instance document for
this value). Created base on alphabetical concatenation of
mOrdinateCategorisation.DimensionMemberSignarute (starting with
the metric).

DPS TEXT Same as DatapointSignature but referring to XBRL codes rather than
database IDs.

4.2.1.20 mCellPosition

Links a cell in a table to its position on the axes of that table by referring to ordinates on intersection

of which the cell occurs.

Attribute Type Description

CellID INTEGER Points to mTableCell.CellID.

OrdinateID INTEGER Points to mAxisOrdinate.OrdinateID.

4.2.1.21 mConceptualModule

Represents modules in general, irrespective of taxonomy versions. Supportive table currenly unused.

Attribute Type Description

ConceptualModuleID INTEGER Artificial ID.

ConceptualModuleCode TEXT Short code for module. E.g. ARS, ARG, …

ConceptualModuleLabel TEXT English label of a module.

4.2.1.22 mModule

A module represents a reporting/filing unit, i.e. a set of tables that should be reported together in a

single report (instance document).

Attribute Type Description

ModuleID INTEGER Artificial ID.

TaxonomyID INTEGER Points to mTaxonomy.TaxonomyID. Taxonomy to which this Module
belongs.

ModuleCode TEXT Short code, e.g. ars, qrs, arg, …

ModuleLabel TEXT Descriptive label (in English).

ConceptualModuleID TEXT Points to mConceptualModule.ConceptualModuleID.

DefaultFrequency TEXT Frequency of reporting of a module (quarterly, annually, …).

ConceptID INTEGER Points to mConcept.ConceptID. Reference to concept (change, owner and
translation) information.

XBRLSchemaRef TEXT URI used for the schemaRef element in XBRL documents referring to this
module. This is supposed to be the absolute URI to the official location of
the taxonomy files in the domain of its owner.

4.2.1.23 mModuleBusinessTemplate

Indicates which Templates are included in each reporting module.

Attribute Type Description

ModuleID INTEGER Points to mModule.ModuleID. Module to which this entry relates.

Order INTEGER Sequence number to indicate (visual only) ordering of Templates within the
Module. Templates and Tables within the module are presented as defined
by tree structure information in TemplateOrTable table.

Tool for Undertakings DPM Database - Technical documentation 16

BusinessTemplateID INTEGER Template to be included in the Module. Points to
mTemplateOrTable.TemplateOrTableID where TemplateOrTableType =
"TemplateVariant".

4.2.1.24 mModuleLargeDimension

Identifies large dimensions for a modules for later use by the XBRL Parser (to populate

dInstanceLargeDimensionMember) and subsequently by the internal ETL (migrating data from dFact

to classic relational tables).

Attribute Type Description

ModuleID INTEGER Points to mModule.ModuleID.

DimensionID INTEGER Points to mDimension.DimensionID.

4.2.1.25 mTableDimensionSet

Identifies which metrics and dimensions are used in which tables and modules. Supportive table

currently unused.

Attribute Type Description

ModuleID INTEGER Points to mModule.ModuleID.

TableID INTEGER Points to mTable.TableID.

MetricAndDimensions TEXT Identification of a metric and dimensions (sorted alphabetically) that
appear in a table for a given module. There could be many entries for a
table if different sets of dimensions are used (excluding default values).

4.2.1.26 mReference

Identifies regulation describing concepts or other artefacts.

Attribute Type Description

ReferenceID INTEGER Artificial ID.

SourceCode TEXT Short code of a regulation.

Article TEXT Article in the regulation structure.

Paragraph TEXT Paragraph in the regulation structure.

Point TEXT Point in the regulation structure.

Romans TEXT Roman number in the regulation structure.

ReferenceText INTEGER Text of a regulation.

4.2.1.27 mReferenceCategorisation

A pair of dimension and member describing one aspect of the categorisation of a particular position

along an axis of a table.

Attribute Type Description

ReferenceID INTEGER Points to mReference.ReferenceID. The reference for which a dimensional
categorisation is being provided.

DimensionID INTEGER Points to mDimension.DimensionID. The dimension considered to describe the
applicability of the reference.

MemberID INTEGER Points to mMember.MemberID. The relevant value of a dimension describing the
applicability of the reference.

4.2.1.28 mCellReference

Links a cell to a reference (e.g. regulations).

Tool for Undertakings DPM Database - Technical documentation 17

Attribute Type Description

CellID INTEGER Points to mTableCell.CellID.

ReferenceID INTEGER Points to mReference.ReferenceID.

4.2.1.29 mConceptReference

Links concept (and whatever it represents) to a reference (e.g. legal regulation).

Attribute Type Description

ConceptID INTEGER Points to mConcept.ConceptID.

ReferenceID INTEGER Points to mReference.ReferenceID.

4.2.1.30 mLanguage

Stores information on languages that can be used for translation of concepts.

Attribute Type Description

LanguageID INTEGER Artificial ID.

LanguageName TEXT Name of a language in that language.

EnglishName TEXT Name of a language in English.

IsoCode TEXT Language ISO (639-1) code.

ConceptID INTEGER Points to mConcept.ConceptID. Enables translation of language names to
different languages.

4.2.1.31 mConceptTranslation

Links concept (and whatever it represents) to its translation in different languages.

Attribute Type Description

ConceptID INTEGER Points to mConcept.ConceptID.

LanguageID INTEGER Point to mLanguage.LanguageID.

OwnerID INTEGER Enables translations of a concept to the same language by different owners.

Text TEXT Text of the translation.

4.2.1.32 vExpression

Test expressions used by the validation rules.

Attribute Type Description

ExpressionID INTEGER Artificial ID.

ExpressionType TEXT One of the following: null, "Intrinsic in XBRL" (e.g. for identical data
points), "Not implemented in XBRL".

TableBasedFormula TEXT Expression referring to table row/columns, e.g. {S.27.01.01.02,
R0760,C0090} = {S.27.01.01.02, R0600,C0090} + {S.27.01.01.02,
R0750,C0090}. In combination with vValidationRule.Scope identifies all
potential cells involved in the rule.

LogicalExpression TEXT Expression referring to variable names
(vVariableOfExpression.VariableCode), e.g. $a = +$b + $c.

ErrorMessage TEXT Message displayed when expression is evaluated to an error.

4.2.1.33 vPrecondition

Precondition for a rule.

Attribute Type Description

Tool for Undertakings DPM Database - Technical documentation 18

ValidationRuleID INTEGER Links precondition to a validation rule
(vValidationRule.ValidationRuleID).

PreconditionExpressionID INTEGER Points to vExpression.ExpressionID representing the test of a
precondition.

4.2.1.34 vValidationRule

Defines validation rules.

Attribute Type Description

ValidationRuleID INTEGER Artificial ID.

ValidationCode TEXT Code of validation (as defined by business users in the input materials or in
the taxonomy files). E.g. S.02.01.03_A19B_x84

Severity TEXT Either "Error" or "Warting". May include “(deactivated)” to identify
deactivated rules.

Scope TEXT Identification of where the rule applies in terms of tables and their
row/columns, e.g. S.07.00.01.a
(r010;020;030;040;050;060;070;080;090;110;130, All sheets)

ValidationType TEXT One of the following: "Allowed values for metric" (enumerations),
"Coherence check" (related to introductory table), "Hierarchy", "Identity"
(not implemented in XBRL as it is XBRL intrinsic), "Manual", "Sign", "Unique
identifier" (probably not in XBRL, used for example to check uniqueness of
row key in open tables).

ExpressionID INTEGER Points to vExpression.ExpressionID defining test expression for the
validation rule.

ConceptID INTEGER Points to mConcept.ConceptID.

4.2.1.35 vValidationRuleSet

Identifies modules that include a validation rule.

Attribute Type Description

ModuleID INTEGER Points to mModule.ModuleID.

ValidationRuleID INTEGER Points to vValidationRule.ValidationRuleID.

4.2.1.36 vValidationScope

Identifies tables to which a validation rule applies (i.e. refers content of this table - metrics, data points,

ordinates, cells, …). Also used to identify tables where it should not apply.

Attribute Type Description

ValidationRuleID INTEGER Points to vValidationRule.ValidationRuleID.

TableID INTEGER Points to mTable.TableID.

4.2.1.37 vVariableOfExpression

Names of variables and identification of their fall-back values in an expression.

Attribute Type Description

ExpressionID INTEGER Points to vExpressionID.ExpressionID.

VariableCode TEXT Code of a variable, e.g. a, b, c, …

IfMissing TEXT Either "treat as zero", or "do not run rule". Specifies the action to be taken if a
value for a variable is not found (but the templates involved in the rule are
reported, i.e. a blank cell rather than a missing table).

Tool for Undertakings DPM Database - Technical documentation 19

4.2.2 Relationships

4.2.2.1 Concepts, owners, translations and references

DPM artefacts from both, the dictionary (i.e. domains, members, dimensions, hierarchies, metrics) and

the current information requirements (i.e. frameworks, taxonomies, templates and tables, axes,

ordinates, etc.) can be defined by various institutions (owners), have multilingual labels (translations)

and be described in multiple legal regulations (references). Therefore, these artefacts defined in

various entities of the database refer to mConcept entity which supports metadata management, links

to mOwner entity (in order to identify the institution that defined each artefact) and provide

translations (mConceptTranslation) or references (mConceptReference and mReference).

Moreover, owners and languages are also concepts (for example language names can be translated in

various languages, properties of owners can modified, etc.).

4.2.2.2 Dictionary (domains, members, hierarchies and dimensions)

Dictionary contains definitions of domains (mDomain). Each domain consists of members (mMembers)

and is associated with dimensions (mDimensions) that further contextualize members in the

information requirements section of the database. For documentation purposes and in order to

support management of the dictionary, members are gathered in hierarchies (mHierarchy and

mHierarchyNode). These tree-like structures may also describe basic arithmetical relationships

between members (following the nesting and values of mHierarchyNode.ComparisonOperator and

mHierarchyNode.UnaryOperator). Metrics (mMetric) are members of a selected domain that are

further associated with period type, balance and data type attributes. In some cases, the latter could

take form of a list of members of another domain (by reference to this domain and hierarchy of its

members).

Tool for Undertakings DPM Database - Technical documentation 20

4.2.2.3 Information requirements (frameworks, taxonomies, modules, templates, and tables)

Information requirements are split in frameworks (mReportingFramework) that represent separate

areas of interests/subject topics of collected data.

Frameworks are versioned as taxonomies (mTaxonomy) that identify data sets required at the

particular moment of time (previous, current and potentially also future versions).

Taxonomies consists of templates (mTemplateOrTable with TemplateOrTableType =

“TemplatesGroup”, “Template” or “TemplateVariant”) which are graphical tabular representations of

information requirements as defined in the legal regulations. Templates may consist of multiple

individual tables, being defined as such originally or split as a result of normalization of the original

tables (mTemplateOrTable with TemplateOrTableType = “BusinessTable” or “AnnotatedTable”).

Tool for Undertakings DPM Database - Technical documentation 21

Description of actual tables starts with mTable entity. As in the EBA DPM MS Access database, tables

can be reused by taxonomies if they remain unchanged between different versions of frameworks

(mTaxonomyTable).

Taxonomies may define numerous templates. Depending on reporting period or type of a report not

all templates must be filed under certain reporting scenario. Therefore modules (mModule) gather

templates that are shall be submitted in one set (mModuleBusinessTemplate).

4.2.2.4 Tables and their components: axes, ordinates, cells

As described in the previous sections, actual tables are defined in mTable entity. There are linked with

axes (mAxis) using mTableAxis entity. Each axis defines a section of the table represented as headers

Tool for Undertakings DPM Database - Technical documentation 22

of columns (AxisOrientation = “X”), headers of rows (AxisOrientation = “Y”) or pages/sheets

(AxisOrientation = “Z”) multiplying the table, typically represented as a drop-down combo box above

the table or reproductions of table views in separate window tabs. Axis consist of ordinates

representing each individual header of a row, column or page/sheet (depending on disposition of the

axis their belong to). Similarly to headers, ordinates can be nested and result in graphs/tree-structures.

Ordinates may be associated with the dictionary concepts (mOrdinateCategorisation) identifying

dimensions and members hidden behind the row/column/page header they represent (usually

corresponding to, but not always identical as the text of a header). Axes whose ordinates are identical

to the member structures defined in domains can link to hierarchies and reuse them as a whole or in

parts (mOpenAxisValueRestriction). Table cells occur on the intersection of axis ordinates

(mCellPosition). Each cell represents none (grey shaded/criss-crossed), one or many data points

(mTableCell).

Tool for Undertakings DPM Database - Technical documentation 23

4.2.2.5 Validation rules

Reflection of the validation rules metadata is much less elaborate in this component of the T4U

database comparing to the EBA DPM MS Access database. The reason for that is still unknown (at the

moment of writing of this document) what would be the format of business rules definition in the

input/source materials for the Solvency II and to which extend their execution would be conducted in

the database (rather than outputting and evaluating them as XBRL taxonomy linkbase according to the

Formula specification).

Currently in the database the validation rules are identified in vValidationRule entity. Their test

expression and variables used are defined in vExpression and vVariableOfExpression entities.

Validations can be linked to preconditions (vPreCondition) that can also have test expression and refer

to variables. Scope of validations is defined in respect to tables where it applies (vValidationScope).

Moreover validations are gathered in sets (vValidationRuleSet) based on their application to specific

modules.

5 Database validations execution definition
There are two tables defining execution of validations (based on other table starting with “v”). Both

hold definition of the SQL scripts generated for quick, run-time execution of the validation rules.

Generated scripts, as a source of data for validation, use dynamic structures for data storage. Both

tables that store validation rules scripts, contain two common columns:

 SQL – script of validation rules, that returns:

o INSTANCE – identification of instance in which validation rule failed

Tool for Undertakings DPM Database - Technical documentation 24

o PK_ID – identification of the row of dynamic structures table, in which evaluation of

validation rules failed

o E[i]_FORMULA – formula of validation rule evaluation (where [i] is the initial number

of the validation rule that is evaluated in this SQL script), return null if rule is not

broken, and returns string with formula containing fact values, when rule is broken

o CONTEXT – column returning additional information about

 CELLS – representation of cells that are included in evaluations of particular SQL script,

pointing to the validation rule, initial number of the formula and set of cells that were part of

evaluation {[ValidationRuleId],[i],[TableCode.rcCode]|[TableCode.rcCode]}

5.1 Entities

5.1.1 vValidationRuleSQL
Stores SQL scripts that execute rules working on multiple dynamic tables each.

Attribute Type Description

SqlID INTEGER Artificial Primary Key of Validation rules SQL

ValidationRuleID INTEGER Foreign key, referencing ValidationRuleID in vValidationRule table

SQL TEXT SCL script of validation rule

CELLS TEXT Representation of cells that are included in evaluations of particular
SQL script

5.1.2 vIntraTableSQL
Stores SQL scripts that execute rules working on single dynamic table each.

Attribute Type Description

TableID INTEGER Primary key referencing table id

SQL TEXT SCL script of validation rules

CELLS TEXT Representation of cells that are included in evaluations of particular
SQL script

Tool for Undertakings DPM Database - Technical documentation 25

5.2 Relationships

6 Model of data storage
T4U database structure has two placeholders for storage of data:

- according to the DPM metadata for XBRL read/write,

- dynamic structures to be used in data validation or access (for rendering purposes).

6.1 Data storage according to DPM metadata for XBRL read/write
The DPM methodology is mainly focused on description of metadata for clear communication of

information requirements by defining each data point fully, explicitly and consistently across the

model. From this standpoint, reported facts refer to DPM properties (metrics and dimension-member

pairs) describing the exchanged piece of information.

The simplest and the most natural manner of modelling this in the database is associating fact values

with the data point signatures (as described in the previous chapter of this document).

6.1.1 Entities
There are only few entities used in this component of the database. Their purpose and description of

their attributes is provided below in the next sections of this chapter.

6.1.1.1 dInstance

Stores information on instance documents.

Attribute Type Description

vIntraTableSQL
TableID

SQL

CELLS

vValidationRule
ValidationRuleID

ValidationCode

Severity

Scope

ValidationType

ExpressionID

ConceptID

vValidationRuleSQL
SqlID

ValidationRuleID

SQL

CELLS

mTable
TableID

TableCode

TableLabel

FromDate

ToDate

XbrlFilingIndicatorCode

XbrlTableCode

ConceptID

YDimVal

ZDimVal

Tool for Undertakings DPM Database - Technical documentation 26

InstanceID INTEGER Artificial ID.

ModuleID INTEGER Points to mModule.ModuleID based on schema reference in the
instance document (mModule.XbrlSchemaRef).

FileName TEXT Instance document file name.

CompressedFileBlob BLOB BLOB of compressed instance document file.

Timestamp DATETIME Date and time of instance creation (load or last modification in data
entry interfaces).

EntityScheme TEXT Entity identifier scheme.

EntityIdentifier TEXT Entity identifier.

EntityName TEXT Entity name.

PeriodEndDateOrInstant DATE Date of facts in instance document.

EntityCurrency TEXT Default ISO 4217 currency code for reported monetary facts.

6.1.1.2 dFact

Reported facts.

Attribute Type Description

FactID INTEGER Artificial ID.

InstanceID INTEGER Instance document in which the fact was reported. Points to
dInstance.InstanceID.

DataPointSignature TEXT Same as mTableCell.DataPointSignature but with wildcards replaced with
actually reported values (for typed dimensions and dimensions referring
to hierarchies of members).

Unit TEXT Content of unit measures. Usually: iso4217:EUR or other currency code
for monetary and xbrli:pure for other numeric facts.

Decimals TEXT Precision of reported numeric fact as defined in XBRL specification by
@decimals attribute.

NumericValue REAL Value of a fact if numeric.

DateTimeValue DATE Value of a fact if date. ISO Format i.e. YYYY-MM-DD.

BooleanValue BOOLEAN Value of a fact if boolean.

TextValue TEXT Value of a fact if not numeric, date or boolean.

6.1.1.3 dFilingIndicator

Identifies filing indicators sent in a report.

Attribute Type Description

InstanceID INTEGER Points to dInstance.InstanceID.

BusinessTemplateID INTEGER Points to mTemplateOrTable.TemplateOrTableID where
TemplateOrTableType = "TemplateVariant".

Filed BOOLEAN 0 for find:filed=”false”, 1 for find:filed=”true”, null for missing (“true”
by default)

6.1.1.4 dInstanceLargeDimensionMember

Contains members for large dimensions.

Attribute Type Description

InstanceID INTEGER Points to dInstance.InstanceID.

DimensionID INTEGER Points to mDimension.DimensionID.

MemberID INTEGER Points to mMember.MemberID

Tool for Undertakings DPM Database - Technical documentation 27

6.1.1.5 dAvailableTable

Identifies tables where facts from an instance document could belong to. Unsused.

Attribute Type Description

InstanceID INTEGER Instance document in which the facts were reported (dInstance.InstanceID).

TableID INTEGER Table where facts could belongs to (mTable.TableID).

ZDimVal TEXT Values of Z axes properties (metrics, dimension member pairs, typed
dimension values) of a table for facts in the instance (helps in selection from
multiple values on Z axes).

NumberOfRows INTEGER Total number of rows for an open table and given Z axes values.

6.1.1.6 dProcessingContext

Temporary/staging phase table for storing information on contexts from a loaded instance document.

Unused.

Attribute Type Description

InstanceID INTEGER Points to dInstance.InstanceID.

ContextID TEXT @id of a context from instance document.

SortedDimensions TEXT Dimensions and their values. Sorted.

IsNotValid INTEGER Identifies a context that for some reason is not valid.

6.1.1.7 dProcessingFact

Temporary/staging phase table for storing information on facts from a loaded instance document.

Unused.

Attribute Type Description

InstanceID INTEGER Points to dInstance.InstanceID.

Metric TEXT Metric QName.

ContextID TEXT Points to dProcessingContext.ContextID.

Text TEXT Value of a fact if not numeric or date.

Number REAL Value of a fact if numeric.

Date REAL Value of a fact if date.

Error TEXT Identifies an error in fact declaration.

6.1.2 Relationships
Information about stored instance documents is represented in dInstance entity. It identifies a module

(mModule) that was the basis for creation of a report (selecting from various available reporting

scenarios). Indication of templates that were submitted for a given module is stored in dFilingIndicator

entity.

Values for the reported facts are warehoused in dFact entity. Each fact is identified by a data point

signature in DataPointSignature column.

Information on what tables were potentially reported may be generated in dAvailableTable (based on

metadata from mTableDimensionSet). This information may be helpful in further processing and use

of data.

Tool for Undertakings DPM Database - Technical documentation 28

6.2 Dynamic structures for data storage
This sections describes in more detail the principle of operation of the classic relational data storage

placeholders and the related processes of data migration and validation.

6.2.1 General idea, goals and alternatives considered
As explained in the introduction to this document storage of facts according to the DPM properties is

not flawless. Therefore and attempt was made to assess alternative approaches. The main goals for

consideration during this assessment were related to:

 data validation:

- automatic generation of checks based in business formulation (modelled in annotated

templates, most likely in a table centric manner i.e. referring to business codes or

rows/columns/sheet notation) or using the formulation of the EBA DPM MS Access

database assertions (mix of table centric and data centric),

- performance, especially in case of rules for open table,

- duplicates (i.e. same fact appearing in different tables which is inevitable in table

centric manner for data storage),

 rendering and data access (CRUD) for data entry tools:

- handling of duplicates,

- populating of open tables and hints for reported z-axes values,

Tool for Undertakings DPM Database - Technical documentation 29

 facilitate the understanding of the database for non DPM/XBRL experts and providing

alternative structure for ETLs.

The following alternative solutions were considered in the process of assessment:

1. Dynamically created standard (classic) relational structures - for each taxonomy table a

relational table is created; this table resembles row column structure of a taxonomy table it

corresponds to.

2. Schema-star like structure - relational table which each row stores information about one fact

from taxonomy table, additionally identifying from which table/row/column/page it comes.

3. Stable flat structure - one structure of relational table for representation of all taxonomy tables

(with predefined attributes for various purposes).

The analysis of the three alternatives above led to the conclusion that:

 alternative number two is similar to the storage of facts in DPM properties placeholders, but

instead of dimension-member pairs it uses row/column codes to identify the facts,

 solution three may encounter unexpected cases which would be hard to deal with (unknown

and potentially different to the assumed number of columns for various purposes),

 option one is least stable but probably the closest to the desired result.

Selection of alternative one does not mean that it is flawless. The main drawbacks are:

 maintenance process includes regeneration of tables in case of changes in information

requirements and migration of data,

 database structure is more complex and less stable,

 another steps in processing and validation of data (move data to another tables to interact

with XBRL parser, detect duplicates, etc.),

 need to think of how to accommodate precision if can be different for each fact.

On the positive side, selected alternative one it is easy to understand by DPM unaware users, the

queries on the data are relatively simple and it is expected that performance of validations and

rendering should increase.

6.2.2 Example explaining principle of operation
Example explaining the principle of operation of classic relational structures placeholder is based on

two “dummy” sample tables – closed table S.99.12.31.01 with z-axis and open table S.44.01.02.01:

S.99.12.31.01

Page …

 C10 C20 C30 C40 C50

R10

R20

R30

R40

R50

S.44.01.02.01

C10 C20 C30 C40

… … … …

Tool for Undertakings DPM Database - Technical documentation 30

6.2.2.1 Generating of classic relational tables

DPM metadata of these tables is populated from the annotated templates and stored in DPM

metadata components of the database. Please mind that for the sake of simplicity only these attributes

necessary to explain the use case are presented and populated in the entities below.

In the first stage the information about the tables together with their codes is populated in mTable

entity.

mTable

TableID TableCode

1365 S.99.12.31.01

1699 S.44.01.02.01

Following this, information about the axes and their dispositions is stored in mAxis:

mAxis

AxisID Orientation

122 X

123 Y

124 Z

131 Y

132 Y

133 X

and the axes are linked to tables via many-to-many mTableAxis:

mTableAxis

TableID AxisID

1365 122

1365 123

1365 124

1699 131

1699 132

1699 133

Every row and column header is given representation in mAxisOrdinate table:

mAxisOrdinate

AxisID OrdinateID OrdinateCode IsRowKey

122 201 10

122 202 20

122 203 30

122 204 40

122 205 50

123 210 10

123 211 20

123 212 30

123 213 40

123 214 50

124 215

131 428 10 true

132 429 20 true

133 439 30

133 440 40

Axes referring to members lists from the dictionary (z-axis in closed table and one of y axes in open

table) link to hierarchies in mOpenAxisValueRestriction.

Tool for Undertakings DPM Database - Technical documentation 31

mOpenAxisValueRestriction

AxisID HierarchyID

124 12

132 12

All ordinates are assigned with dimension member codes hidden behind their description in annotated

templates. This is done in mOrdinateCategorisation:

mOrdinateCategorisation

OrdinateID DimensionCode MemberCode

201 MET mi2

201 BAS x26

202 MET mi5

203 MET mi10

204 MET mi12

205 MET mi1

210 PFL x12

211 PFL x24

212 PFL x32

213 PFL x43

214 PFL x23

215 CTP open

428 IDC open

429 CTP open

439 MET mi67

439 BAS x12

440 MET pi68

This information is enough to generate the classic relational structure data placeholders.

For every table in mTable and a given taxonomy (based on mTaxonomyTable entity) a separate

relational table is created. The first column in this table is reference to dInstance entity, followed by a

column for each z-axis (page) and a column for every cell in table (based on mTableCell, excluding criss-

crossed/gray shaded cells):

1365_S.99.12.31.01

InstanceID Page R10C10 R10C20 R10C30 R10C40 R10C50 R20C10 …

For open tables, entities’ columns resemble columns of the underlying table:

1699_S.44.01.02.01

InstanceID C10 C20 C30 C40

6.2.2.2 Mapping table

In the process of generating classic relational tables from the DPM metadata container a mapping table

is defined linking form centric representation with DPM properties hidden behind table

row/column/page. Extract from the mapping table for the analysed example is presented below:

mMapping

TableID RSTableName RowColumnCode Signature

1365 S.99.12.31.01 PAGE1 s2c_CTP(*)

1365 S.99.12.31.01 R10C10 MET(s2md_mi2)|s2c_BAS(s2c_BL:x26)|s2c_PFL(s2c_PL:x12)

1365 S.99.12.31.01 R10C20 MET(s2md_mi2)|s2c_BAS(s2c_BL:x26)s2c_PFL(s2c_PL:x12)

…

Tool for Undertakings DPM Database - Technical documentation 32

1399 S.44.01.02.01 C10 s2c_IDC(*)

1399 S.44.01.02.02 C20 s2c_CTP(*)

1399 S.44.01.02.03 C30 MET(s2md_mi67)|s2c_BAS(s2c_BA:x12)

1399 S.44.01.02.04 C40 MET(s2md_pi68)

6.2.2.3 Data migration

Using information from the mapping table it is possible to move data between classic relational

structures and the DPM properties fact storage (and vice versa).

The following sample numbers were entered in the exemplary tables in order to describe this process:

S.99.12.31.01 S.44.01.02.01

Page PL C10 C20 C30 C40

 12 PL 1001 0.15

 C10 C20 C30 C40 C50 322 ES 2034 0.34

R10 2345 345 436

R20

R30

R40

R50

These would be stored in the classic relational structures as follows:

1365_S.99.12.31.01

InstanceID Page R10C10 R10C20 R10C30 R10C40 R10C50 R20C10 …

1 eu_GA:PL 2345 345 436

1699_S.44.01.02.01

InstanceID C10 C20 C30 C40

1 12 PL 1001 0.15

1 322 ES 2034 0.34

Using the information from the mapping table it is relatively easy to migrate this data to the storage

placeholder according to the DPM properties:

dFact

InstanceID Signature Value Unit Decimals

1 MET(s2md_mi2)|s2c_BAS(s2c_BL:x26)|s2c_CTP(eu_GA:PL)|s2c_PFL(s2c_PL:x12) 2345 EUR 0

1 MET(s2md_mi10)|s2c_CTP(eu_GA:PL)|s2c_PFL(s2c_PL:x12) 345 EUR 0

1 MET(s2md_mi12)|s2c_CTP(eu_GA:PL)|s2c_PFL(s2c_PL:x12) 436 EUR 0

…

1 MET(s2md_mi67)|s2c_BAS(s2c_BA:x12)|s2c_CTP(eu_GA:PL)|s2c_IDC("12") 1001 EUR 0

1 MET(s2md_pi68)|s2c_CTP(eu_GA:PL)|s2c_IDC("12") 0.15 pure 2

1 MET(s2md_mi67)|s2c_BAS(s2c_BA:x12)|s2c_CTP(eu_GA:Es)|s2c_IDC("322") 2034 EUR 0

1 MET(s2md_pi68)|s2c_CTP(eu_GA:ES)|s2c_IDC("322") 0.34 pure 2

It should be equally easy to migrate the data in the other direction.

6.2.3 Entities

6.2.3.1 dMapping

Stores mapping information allowing for matching dynamic tables columns and dimensional

characteristics of facts.

Attribute Type Description

TABLE_VERSION_ID NUMERIC Artificial ID.

Tool for Undertakings DPM Database - Technical documentation 33

DYN_TABLE_NAME VARCHAR Dynamic table name (code + framework +
taxonomy version), e.g.
“S_01_01_01_01__sol2__1_5_2_c”

DYN_TAB_COLUMN_NAME VARCHAR Row column code (R0010C0010) or Page column
name (PAGEs2c_CS)

DIM_CODE VARCHAR Signature of a metric or dimension

DOM_CODE VARCHAR Typed domain signature (if applicable)

MEM_CODE VARCHAR Domain member signature (if applicable)

ORIGIN VARCHAR F, C, …

REQUIRED_MAPPINGS INTEGER Number of mappings of
DYN_TAB_COLUMN_NAME that is required to be
satisfied in order for fact to fit into the
DYN_TAB_COLUMN_NAME

PAGE_COLUMNS_NUMBER INTEGER Number of page column for particular
DYN_TABLE_NAME

DATA_TYPE VARCHAR Data type name abbreviation

IS_PAGE_COLUMN_KEY NUMERIC If row is a PAGE column key has value of 1

IS_DEFAULT NUMERIC If member from DIM_CODE a default member

IS_IN_TABLE NUMERIC For dimensional characteristics dummy columns

6.2.3.2 Example of dynamic table: T__S_12_01_01_02__sol2__1_5_2_c

Table T__S_12_01_01_02__sol2__1_5_2_c is based on S.12.01.01.02 table from taxonomy version

1.5.2.c of solvency2 framework.

Attribute Type Description

PK_ID INTEGER Artificial primary key

INSTANCE INTEGER Foreign key referencing id in distance table

R0010C0020 NUMERIC Value column storing fact for cell R0010C0020

R0010C0030 VARCHAR Value column storing fact for cell R0010C0030

R0010C0040 DATE Value column storing fact for cell R0010C0040

PAGES2C_LX VARCHAR Column storing context information for dimension
S2C_LX

7 Storage of validation results
Description of existing validation rules (based on the taxonomy) and storing of the validation results

for each validated report. When run-time DB validation is triggered, results of validation are managed

in memory, on level of source code. But when validations are performed by Arelle parsing component,

during XBRL import or export, results are stored in dMessage and dMessageReference tables. These

tables are also used for storage of duplicated data point exceptions, occurring during internal ETL from

dynamic tables to dFact.

7.1 Entities

7.1.1 dMessage
Stores content of single results message.

Attribute Type Description

MessageID INTEGER Artificial primary key of message

InstanceID INTEGER Foreign key referencing InstanceID in dInstance
table

SequenceInReport INTEGER Sequential number of message in processed
report

Tool for Undertakings DPM Database - Technical documentation 34

MessageCode TEXT Code identifying type of the message

MessageLevel TEXT Identification of message origin

Value TEXT String representing text of message

7.1.2 dMessageReferrence
Stores reference of message and fact for messages that are related with facts stored in dFact table.

Attribute Type Description

MessageID INTEGER Foreign key referencing MessageID in dMessage
table

DataPointSignature TEXT String representing data point signature of fact
related with message

7.2 Relationships

8 Application interface information

8.1 General model
T4U is expected to be used in multiple European countries with users speaking various languages.

Therefore it is necessary to enable translation of the user interfaces menus, buttons and messages to

these languages.

To accommodate this requirement the database contains three entities.

Tool for Undertakings DPM Database - Technical documentation 35

8.2 Entities
Names of the entities used by applications start with letter “a”. Their content is described in the

following sections of the document.

8.2.1 aApplication
Tool for Undertaking applications (e.g. Windows Forms) and version.

Attribute Type Description

ApplicationID INTEGER Artificial ID.

ApplicationName TEXT Tool name, e.g. Windows Forms, …

ApplicationVersion TEXT

DatabaseType TEXT

8.2.2 aInterfaceComponent
Translation of interface components (e.g. buttons, messages, etc.) into national languages. At

minimum English is provided. Tool for undertaking applications (Windows Forms, …) will use

appropriate entries in this table in their interfaces.

Attribute Type Description

InterfaceComponentID INTEGER Artificial ID.

InBulgarian TEXT Text associated to the component in Bulgarian.

InCroatian TEXT Text associated to the component in Croatian.

InCzech TEXT Text associated to the component in Czech.

InDanish TEXT Text associated to the component in Danish.

InDutch TEXT Text associated to the component in Dutch.

InEnglish TEXT Text associated to the component in English.

InEstonian TEXT Text associated to the component in Estonian.

InFinnish TEXT Text associated to the component in Finnish.

InFrench TEXT Text associated to the component in French.

InGerman TEXT Text associated to the component in German.

InGreek TEXT Text associated to the component in Greek.

InHungarian TEXT Text associated to the component in Hungarian.

InIrish TEXT Text associated to the component in Irish.

InItalian TEXT Text associated to the component in Italian.

InLatvian TEXT Text associated to the component in Latvian.

InLithuanian TEXT Text associated to the component in Lithuanian.

InMaltese TEXT Text associated to the component in Maltese.

InPolish TEXT Text associated to the component in Polish.

InPortuguese TEXT Text associated to the component in Portuguese.

InRomanian TEXT Text associated to the component in Romanian.

InSlovak TEXT Text associated to the component in Slovak.

InSlovenian TEXT Text associated to the component in Slovenian.

InSpanish TEXT Text associated to the component in Spanish.

InSwedish TEXT Text associated to the component in Swedish.

8.2.3 aInterfaceComponentApplication
Links applications with interface components (buttons, messages, etc.).

Attribute Type Description

InterfaceComponentID INTEGER Points to aInterfaceComponent.InterfaceComponentID.

ApplicationID INTEGER Points to aApplication.ApplicationID.

Tool for Undertakings DPM Database - Technical documentation 36

8.3 Relationships
It is expected that the application based on different solution/supporting different technologies will

share at least some components of the interface. Therefore the relation between the translation and

each interface component was defined to be many-to-many as presented on the diagram below.

